We propose STAG4D, a novel framework for high-quality 4D generation, integrating pre-trained diffusion models with dynamic 3D Gaussian splatting. Our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness, setting a new state-of-the-art for 4D generation from diverse inputs, including text, image, and video.
ECCV 2024    Project Page    Code